Monday, 17 July 2017

5 Punkt Gleit Durchschnitt Glättung


Moving Average Dieses Beispiel lehrt Sie, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen können. Ein gleitender Durchschnitt wird verwendet, um Unregelmäßigkeiten (Gipfel und Täler) zu glätten, um Trends leicht zu erkennen. 1. Zuerst schauen wir uns unsere Zeitreihen an. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Kann die Schaltfläche Datenanalyse nicht finden Hier klicken, um das Analysis ToolPak-Add-In zu laden. 3. Wählen Sie Moving Average und klicken Sie auf OK. 4. Klicken Sie in das Feld Eingabebereich und wählen Sie den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3. 8. Zeichnen Sie einen Graphen dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der bisherigen 5 Datenpunkte und der aktuelle Datenpunkt. Dadurch werden Gipfel und Täler geglättet. Die Grafik zeigt einen zunehmenden Trend. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da es nicht genügend vorherige Datenpunkte gibt. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Gipfel und Täler geglättet. Je kleiner das Intervall ist, desto näher sind die gleitenden Mittelwerte auf die tatsächlichen Datenpunkte. Moving durchschnittliche und exponentielle Glättungsmodelle Als erster Schritt in der Bewegung über mittlere Modelle, zufällige Walk-Modelle und lineare Trend-Modelle, Nicht-Sektion Muster und Trends können mit extrapoliert werden Ein gleitender Durchschnitt oder Glättungsmodell. Die Grundannahme hinter Mittelwertbildung und Glättung von Modellen ist, dass die Zeitreihe lokal stationär mit einem langsam variierenden Mittel ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann das als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-without-drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als quotsmoothedquot Version der ursprünglichen Serie, weil kurzfristige Mittelung hat die Wirkung der Glättung der Beulen in der ursprünglichen Serie. Durch die Anpassung des Grades der Glättung (die Breite des gleitenden Durchschnitts), können wir hoffen, eine Art von optimalem Gleichgewicht zwischen der Leistung der mittleren und zufälligen Wandermodelle zu schlagen. Die einfachste Art von Mittelungsmodell ist die. Einfache (gleichgewichtete) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Durchschnitt der letzten m Beobachtungen: (Hier und anderswo verwende ich das Symbol 8220Y-hat8221 zu stehen Für eine Prognose der Zeitreihe Y, die zum frühestmöglichen früheren Datum durch ein gegebenes Modell gemacht wurde.) Dieser Durchschnitt ist in der Periode t (m1) 2 zentriert, was impliziert, dass die Schätzung des lokalen Mittels dazu neigen wird, hinter dem wahren zu liegen Wert des lokalen Mittels um etwa (m1) 2 Perioden. So sagen wir, dass das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt (m1) 2 relativ zu dem Zeitraum ist, für den die Prognose berechnet wird: Dies ist die Zeitspanne, mit der die Prognosen dazu neigen, hinter den Wendepunkten in den Daten zu liegen . Zum Beispiel, wenn Sie durchschnittlich die letzten 5 Werte sind, werden die Prognosen etwa 3 Perioden spät in Reaktion auf Wendepunkte. Beachten Sie, dass, wenn m1, das einfache gleitende Durchschnitt (SMA) - Modell entspricht dem zufälligen Walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar mit der Länge der Schätzperiode), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um die besten Quoten für die Daten zu erhalten, d. h. die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel für eine Reihe, die zufällige Schwankungen um ein langsam variierendes Mittel zeigt. Zuerst können wir versuchen, es mit einem zufälligen Spaziergang Modell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff: Das zufällige Spaziergang Modell reagiert sehr schnell auf Änderungen in der Serie, aber in diesem Fall nimmt es viel von der Quotierung in der Daten (die zufälligen Schwankungen) sowie das quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen ausprobieren, erhalten wir einen glatteren Prognosen: Der 5-fach einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Spaziergangmodell. Das Durchschnittsalter der Daten in dieser Prognose beträgt 3 ((51) 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zurückzukehren. (Zum Beispiel scheint ein Abschwung in der Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich nicht um einige Perioden später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie im zufälligen Spaziergang Modell. So geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während die Prognosen aus dem zufälligen Wandermodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Durchschnitt der letzten Werte. Die von Statgraphics für die Langzeitprognosen des einfachen gleitenden Durchschnittes berechneten Vertrauensgrenzen werden nicht weiter erhöht, wenn der Prognosehorizont zunimmt. Das ist offensichtlich nicht richtig Leider gibt es keine zugrundeliegende statistische Theorie, die uns sagt, wie sich die Konfidenzintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Vertrauensgrenzen für die längerfristigen Prognosen zu berechnen. Zum Beispiel könnten Sie eine Kalkulationstabelle einrichten, in der das SMA-Modell zur Vorhersage von 2 Schritten voraus, 3 Schritten voraus, etc. im historischen Datenmuster verwendet werden würde. Sie können dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addition und Subtraktion von Vielfachen der entsprechenden Standardabweichung aufbauen. Wenn wir einen 9-fach einfachen gleitenden Durchschnitt versuchen, bekommen wir noch glattere Prognosen und mehr von einem nacheilenden Effekt: Das Durchschnittsalter beträgt nun 5 Perioden ((91) 2). Wenn wir einen 19-fachen gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10: Beachten Sie, dass die Prognosen in der Tat hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welche Menge an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistik vergleicht, auch einen 3-Term-Durchschnitt: Modell C, der 5-fache gleitende Durchschnitt, ergibt den niedrigsten Wert von RMSE um einen kleinen Marge über die 3 - term und 9-term Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Zurück zum Anfang der Seite) Browns Einfache Exponential-Glättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, dass es die letzten k-Beobachtungen gleichermaßen behandelt und alle vorherigen Beobachtungen völlig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise abgezinst werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die 2. jüngste, und die 2. jüngsten sollte ein wenig mehr Gewicht als die 3. jüngsten bekommen, und bald. Das einfache exponentielle Glättungsmodell (SES) erreicht dies. Sei 945 eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Reihe L zu definieren, die den gegenwärtigen Pegel (d. h. den lokalen Mittelwert) der Reihe repräsentiert, wie er von den Daten bis zur Gegenwart geschätzt wird. Der Wert von L zum Zeitpunkt t wird rekursiv aus seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorherigen geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf den letzten Wert steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuell geglättete Wert: Gleichermaßen können wir die nächste Prognose direkt in Bezug auf vorherige Prognosen und frühere Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose erhalten, indem man die vorherige Prognose in Richtung des vorherigen Fehlers um einen Bruchteil 945 anpasst Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Rabattfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu bedienen, wenn man das Modell auf einer Tabellenkalkulation implementiert: Es passt in eine Einzelzelle und enthält Zellreferenzen, die auf die vorherige Prognose, die vorherige Beobachtung und die Zelle hinweisen, in der der Wert von 945 gespeichert ist. Beachten Sie, dass bei 945 1 das SES-Modell einem zufälligen Walk-Modell entspricht (ohne Wachstum). Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, vorausgesetzt, dass der erste geglättete Wert gleich dem Mittelwert ist. (Zurück zum Anfang der Seite) Das Durchschnittsalter der Daten in der einfach-exponentiellen Glättungsprognose beträgt 1 945 gegenüber dem Zeitraum, für den die Prognose berechnet wird. (Das soll nicht offensichtlich sein, aber es kann leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher dazu, hinter den Wendepunkten um etwa 1 945 Perioden zurückzukehren. Zum Beispiel, wenn 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Verzögerung) ist die Prognose der einfachen exponentiellen Glättung (SES) der einfachen gleitenden Durchschnitts - (SMA) - Prognose etwas überlegen, da sie die jüngste Beobachtung - Es ist etwas mehr auffallend auf Veränderungen, die in der jüngsten Vergangenheit auftreten. Zum Beispiel hat ein SMA-Modell mit 9 Begriffen und einem SES-Modell mit 945 0,2 beide ein Durchschnittsalter von 5 für die Daten in ihren Prognosen, aber das SES-Modell setzt mehr Gewicht auf die letzten 3 Werte als das SMA-Modell und am Gleichzeitig ist es genau 8220forget8221 über Werte mehr als 9 Perioden alt, wie in dieser Tabelle gezeigt: Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der stufenlos variabel ist, so dass er leicht optimiert werden kann Indem ein Quotsolverquot-Algorithmus verwendet wird, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert von 945 im SES-Modell für diese Baureihe ergibt sich auf 0,2961, wie hier gezeigt: Das Durchschnittsalter der Daten in dieser Prognose beträgt 10.2961 3.4 Perioden, was ähnlich ist wie bei einem 6-fach einfach gleitenden Durchschnitt. Die langfristigen Prognosen des SES-Modells sind eine horizontale Gerade. Wie im SMA-Modell und dem zufälligen Walk-Modell ohne Wachstum. Allerdings ist zu beachten, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftig aussehenden Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das zufällige Spaziergangmodell. Das SES-Modell geht davon aus, dass die Serie etwas vorhersehbar ist als das zufällige Spaziergangmodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells. So bietet die statistische Theorie der ARIMA-Modelle eine fundierte Grundlage für die Berechnung von Konfidenzintervallen für das SES-Modell. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht-seasonalen Differenz, einem MA (1) Term und keinem konstanten Term. Ansonsten bekannt als ein quotARIMA (0,1,1) Modell ohne constantquot. Der MA (1) - Koeffizient im ARIMA-Modell entspricht der Menge 1-945 im SES-Modell. Zum Beispiel, wenn man ein ARIMA (0,1,1) Modell ohne Konstante an die hier analysierte Serie passt, ergibt sich der geschätzte MA (1) Koeffizient 0,7029, was fast genau ein minus 0.2961 ist. Es ist möglich, die Annahme eines nicht-null konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Um dies zu tun, geben Sie einfach ein ARIMA-Modell mit einer nicht-seasonalen Differenz und einem MA (1) Begriff mit einer Konstante, d. h. ein ARIMA (0,1,1) Modell mit konstant. Die langfristigen Prognosen werden dann einen Trend haben, der dem durchschnittlichen Trend entspricht, der über den gesamten Schätzungszeitraum beobachtet wird. Sie können dies nicht in Verbindung mit saisonaler Anpassung tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA eingestellt ist. Allerdings können Sie einen konstanten langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell (mit oder ohne saisonale Anpassung) hinzufügen, indem Sie die Inflationsanpassungsoption im Vorhersageverfahren verwenden. Die jeweilige Quotenquote (prozentuale Wachstumsrate) pro Periode kann als Steigungskoeffizient in einem linearen Trendmodell geschätzt werden, das an die Daten in Verbindung mit einer natürlichen Logarithmus-Transformation angepasst ist, oder sie kann auf anderen, unabhängigen Informationen über langfristige Wachstumsaussichten basieren . (Zurück zum Seitenanfang) Browns Linear (dh Double) Exponentielle Glättung Die SMA Modelle und SES Modelle gehen davon aus, dass es in den Daten keinen Trend gibt (was in der Regel ok oder zumindest nicht so schlecht ist für 1- Schritt-voraus Prognosen, wenn die Daten relativ laut sind), und sie können modifiziert werden, um einen konstanten linearen Trend wie oben gezeigt zu integrieren. Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen den Lärm auszeichnet, und wenn es notwendig ist, mehr als einen Zeitraum voraus zu prognostizieren, dann könnte auch eine Einschätzung eines lokalen Trends erfolgen Ein Problem. Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungsmodell (LES) zu erhalten, das lokale Schätzungen sowohl von Ebene als auch von Trend berechnet. Das einfachste zeitveränderliche Trendmodell ist das lineare, exponentielle Glättungsmodell von Browns, das zwei verschiedene geglättete Serien verwendet, die zu unterschiedlichen Zeitpunkten zentriert sind. Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren. (Eine ausgefeiltere Version dieses Modells, Holt8217s, wird unten diskutiert.) Die algebraische Form des linearen exponentiellen Glättungsmodells von Brown8217s, wie das des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von verschiedenen, aber äquivalenten Formen ausgedrückt werden. Die quadratische Form dieses Modells wird gewöhnlich wie folgt ausgedrückt: Sei S die einfach geglättete Reihe, die durch Anwendung einer einfachen exponentiellen Glättung auf die Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch: (Erinnern Sie sich, dass unter einfachem Exponentielle Glättung, das wäre die Prognose für Y in der Periode t1.) Dann sei Squot die doppelt geglättete Reihe, die durch Anwendung einer einfachen exponentiellen Glättung (mit demselben 945) auf die Reihe S erhalten wird: Schließlich ist die Prognose für Y tk. Für irgendwelche kgt1 ist gegeben durch: Dies ergibt e 1 0 (d. h. Cheat ein Bit, und lassen Sie die erste Prognose gleich der tatsächlichen ersten Beobachtung) und e 2 Y 2 8211 Y 1. Nach denen Prognosen mit der obigen Gleichung erzeugt werden. Dies ergibt die gleichen angepassten Werte wie die Formel auf Basis von S und S, wenn diese mit S 1 S 1 Y 1 gestartet wurden. Diese Version des Modells wird auf der nächsten Seite verwendet, die eine Kombination aus exponentieller Glättung mit saisonaler Anpassung darstellt. Holt8217s Lineare Exponential-Glättung Brown8217s LES-Modell berechnet lokale Schätzungen von Level und Trend durch Glättung der aktuellen Daten, aber die Tatsache, dass es dies mit einem einzigen Glättungsparameter macht, legt eine Einschränkung auf die Datenmuster, die es passen kann: das Niveau und den Trend Dürfen nicht zu unabhängigen Preisen variieren. Holt8217s LES-Modell adressiert dieses Problem, indem es zwei Glättungskonstanten einschließt, eine für die Ebene und eine für den Trend. Zu jeder Zeit t, wie in Brown8217s Modell, gibt es eine Schätzung L t der lokalen Ebene und eine Schätzung T t der lokalen Trend. Hier werden sie rekursiv aus dem Wert von Y, der zum Zeitpunkt t beobachtet wurde, und den vorherigen Schätzungen des Niveaus und des Tendenzes durch zwei Gleichungen berechnet, die eine exponentielle Glättung für sie separat anwenden. Wenn der geschätzte Pegel und der Trend zum Zeitpunkt t-1 L t82091 und T t-1 sind. Dann ist die Prognose für Y tshy, die zum Zeitpunkt t-1 gemacht worden wäre, gleich L t-1 T t-1. Wenn der Istwert beobachtet wird, wird die aktualisierte Schätzung des Pegels rekursiv durch Interpolation zwischen Y tshy und dessen Prognose L t-1 T t-1 unter Verwendung von Gewichten von 945 und 1 945 berechnet. Die Änderung des geschätzten Pegels, Nämlich L t 8209 L t82091. Kann als eine laute Messung des Trends zum Zeitpunkt t interpretiert werden. Die aktualisierte Schätzung des Trends wird dann rekursiv durch Interpolation zwischen L t 8209 L t82091 und der vorherigen Schätzung des Trends T t-1 berechnet. Mit Gewichten von 946 und 1-946: Die Interpretation der Trend-Glättungs-Konstante 946 ist analog zu der Niveau-Glättungs-Konstante 945. Modelle mit kleinen Werten von 946 gehen davon aus, dass sich der Trend nur sehr langsam über die Zeit ändert, während Modelle mit Größer 946 nehmen an, dass es sich schneller ändert. Ein Modell mit einer großen 946 glaubt, dass die ferne Zukunft sehr unsicher ist, denn Fehler in der Trendschätzung werden bei der Prognose von mehr als einer Periode sehr wichtig. (Zurück zum Seitenanfang) Die Glättungskonstanten 945 und 946 können in der üblichen Weise durch Minimierung des mittleren quadratischen Fehlers der 1-Schritt-voraus-Prognosen geschätzt werden. Wenn dies in Statgraphics geschieht, ergeben sich die Schätzungen auf 945 0.3048 und 946 0,008. Der sehr kleine Wert von 946 bedeutet, dass das Modell eine sehr geringe Veränderung des Trends von einer Periode zur nächsten einnimmt, so dass dieses Modell grundsätzlich versucht, einen langfristigen Trend abzuschätzen. In Analogie zum Begriff des Durchschnittsalters der Daten, die bei der Schätzung der lokalen Ebene der Serie verwendet wird, ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet wird, proportional zu 1 946, wenn auch nicht genau gleich . In diesem Fall stellt sich heraus, dass es sich um 10.006 125 handelt. Dies ist eine sehr genaue Zahl, da die Genauigkeit der Schätzung von 946 wirklich 3 Dezimalstellen ist, aber sie ist von der gleichen allgemeinen Größenordnung wie die Stichprobengröße von 100 Dieses Modell ist durchschnittlich über eine ganze Menge Geschichte bei der Schätzung der Trend. Die prognostizierte Handlung unten zeigt, dass das LES-Modell einen geringfügig größeren lokalen Trend am Ende der Serie schätzt als der im SEStrend-Modell geschätzte konstante Trend. Auch der Schätzwert von 945 ist fast identisch mit dem, der durch die Anpassung des SES-Modells mit oder ohne Trend erhalten wird. Das ist also fast das gleiche Modell. Nun, sehen diese aus wie vernünftige Prognosen für ein Modell, das soll ein lokaler Trend schätzen Wenn Sie diese Handlung, es sieht so aus, als ob der lokale Trend hat sich nach unten am Ende der Serie Was ist passiert Die Parameter dieses Modells Wurden durch die Minimierung der quadratischen Fehler von 1-Schritt-voraus Prognosen, nicht längerfristige Prognosen geschätzt, in welchem ​​Fall der Trend doesn8217t machen einen großen Unterschied. Wenn alles, was Sie suchen, sind 1-Schritt-vor-Fehler, sehen Sie nicht das größere Bild der Trends über (sagen) 10 oder 20 Perioden. Um dieses Modell mehr im Einklang mit unserer Augapfel-Extrapolation der Daten zu erhalten, können wir die Trend-Glättung konstant manuell anpassen, so dass es eine kürzere Grundlinie für Trendschätzung verwendet. Zum Beispiel, wenn wir uns dafür entscheiden, 946 0,1 zu setzen, dann ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, 10 Perioden, was bedeutet, dass wir den Trend über die letzten 20 Perioden oder so vermitteln. Hier8217s, was die Prognose Handlung aussieht, wenn wir 946 0,1 gesetzt, während halten 945 0,3. Das sieht für diese Serie intuitiv vernünftig aus, obwohl es wahrscheinlich gefährlich ist, diesen Trend in Zukunft mehr als 10 Perioden zu extrapolieren. Was ist mit den Fehlerstatistiken Hier ist ein Modellvergleich für die beiden oben gezeigten Modelle sowie drei SES-Modelle. Der optimale Wert von 945 für das SES-Modell beträgt etwa 0,3, aber es werden ähnliche Ergebnisse (mit etwas mehr oder weniger Ansprechverhalten) mit 0,5 und 0,2 erhalten. (A) Holts linear exp. Glättung mit alpha 0.3048 und beta 0.008 (B) Holts linear exp. Glättung mit alpha 0,3 und beta 0,1 (C) Einfache exponentielle Glättung mit alpha 0,5 (D) Einfache exponentielle Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0.2 Ihre Stats sind nahezu identisch, so dass wir wirklich die Wahl treffen können Von 1-Schritt-voraus Prognosefehler innerhalb der Datenprobe Wir müssen auf andere Überlegungen zurückgreifen. Wenn wir stark davon überzeugt sind, dass es sinnvoll ist, die aktuelle Trendschätzung auf das, was in den letzten 20 Perioden passiert ist, zu stützen, so können wir einen Fall für das LES-Modell mit 945 0,3 und 946 0,1 machen. Wenn wir agnostisch darüber sein wollen, ob es einen lokalen Trend gibt, dann könnte eines der SES-Modelle leichter zu erklären sein und würde auch mehr Mittelwert der Prognosen für die nächsten 5 oder 10 Perioden geben. (Rückkehr nach oben) Welche Art von Trend-Extrapolation ist am besten: horizontal oder linear Empirische Evidenz deutet darauf hin, dass, wenn die Daten bereits für die Inflation angepasst wurden (falls erforderlich), dann kann es unklug sein, kurzfristig linear zu extrapolieren Trends sehr weit in die Zukunft. Trends, die heute deutlich werden, können in Zukunft aufgrund unterschiedlicher Ursachen wie Produktveralterung, erhöhter Konkurrenz und zyklischer Abschwünge oder Aufschwünge in einer Branche nachlassen. Aus diesem Grund führt eine einfache, exponentielle Glättung oftmals zu einem besseren Out-of-Sample, als es sonst zu erwarten wäre, trotz der quadratischen horizontalen Trend-Extrapolation. Gedämpfte Trendmodifikationen des linearen exponentiellen Glättungsmodells werden auch in der Praxis häufig verwendet, um eine Note des Konservatismus in seine Trendprojektionen einzuführen. Das LES-Modell mit gedämpftem Trend kann als Spezialfall eines ARIMA-Modells, insbesondere eines ARIMA (1,1,2) - Modells, implementiert werden. Es ist möglich, Konfidenzintervalle um Langzeitprognosen zu berechnen, die durch exponentielle Glättungsmodelle erzeugt werden, indem sie sie als Sonderfälle von ARIMA-Modellen betrachten. (Vorsicht: Nicht alle Software berechnet die Konfidenzintervalle für diese Modelle korrekt.) Die Breite der Konfidenzintervalle hängt von (i) dem RMS-Fehler des Modells ab, (ii) der Art der Glättung (einfach oder linear) (iii) der Wert (S) der Glättungskonstante (n) und (iv) die Anzahl der voraussichtlichen Perioden, die Sie prognostizieren. Im Allgemeinen werden die Intervalle schneller ausgebreitet als 945 im SES-Modell größer und sie breiten sich viel schneller aus, wenn lineare statt einfache Glättung verwendet wird. Dieses Thema wird im ARIMA-Modellteil der Notizen weiter erörtert. (Zurück zum Seitenanfang) 5.2 Glättung der Zeitreihe Die Glättung wird in der Regel getan, um uns besser zu helfen, Muster zu sehen, Trends zum Beispiel in Zeitreihen. Im Allgemeinen glatt die unregelmäßige Rauheit, um ein klareres Signal zu sehen. Für saisonale Daten können wir die Saisonalität ausgleichen, damit wir den Trend identifizieren können. Glättung gibt uns nicht ein Modell, aber es kann ein guter erster Schritt bei der Beschreibung verschiedener Komponenten der Serie sein. Der Begriff Filter wird manchmal verwendet, um ein Glättungsverfahren zu beschreiben. Wenn zum Beispiel der geglättete Wert für eine bestimmte Zeit als eine lineare Kombination von Beobachtungen für Umgebungszeiten berechnet wird, könnte man sagen, dass wir ein lineares Filter auf die Daten angewendet haben (nicht dasselbe wie das Ergebnis, ist eine gerade Linie, durch der Weg). Die traditionelle Verwendung des Begriffs Gleitender Durchschnitt ist, dass zu jedem Zeitpunkt die (möglicherweise gewichteten) Mittelwerte der beobachteten Werte, die eine bestimmte Zeit umgeben, ermittelt werden. Zum Beispiel zum Zeitpunkt t. Ein zentrierter gleitender Durchschnitt der Länge 3 mit gleichen Gewichten wäre der Mittelwert der Werte zu Zeiten t -1. T Und t1. Um Saisonalität von einer Serie wegzunehmen, so können wir besser sehen Trend, würden wir einen gleitenden Durchschnitt mit einer Länge Saisonspanne verwenden. So wurde in der geglätteten Serie jeder geglättete Wert über alle Jahreszeiten gemittelt. Dies geschieht durch einen einseitigen gleitenden Durchschnitt, in dem Sie alle Werte für die vorherigen Jahre im Wert von Daten oder einen zentrierten gleitenden Durchschnitt, in dem Sie Werte sowohl vor als auch nach der aktuellen Zeit verwenden, durchschnittlich sind. Für vierteljährliche Daten können wir beispielsweise einen geglätteten Wert für die Zeit t als (x t x t-1 x t-2 x t-3) 4, den Mittelwert dieser Zeit und die vorherigen 3 Quartale definieren. Im R-Code handelt es sich um einen einseitigen Filter. Ein zentrierter gleitender Durchschnitt schafft ein bisschen Schwierigkeit, wenn wir in der Saisonspanne eine gerade Anzahl von Zeiträumen haben (wie wir es normalerweise tun). Um die Saisonalität in vierteljährlichen Daten zu verteilen. Um den Trend zu identifizieren, ist die übliche Konvention, den gleitenden Durchschnitt zu verwenden, der zum Zeitpunkt der Zeit geglättet wird. Um die Saisonalität in monatlichen Daten zu verkleinern. Um den Trend zu identifizieren, ist die übliche Konvention, den gleitenden Durchschnitt zu verwenden, der zum Zeitpunkt t geglättet wird. Das heißt, wir wenden das Gewicht 124 auf Werte t6 und t6 und Gewicht 112 auf alle Werte zu allen Zeiten zwischen t5 und t5 an. In der R-Filter-Befehl, gut spezifizieren Sie einen zweiseitigen Filter, wenn wir Werte verwenden wollen, die vor und nach der Zeit für die Glättung kommen. Beachten Sie, dass auf der Seite 71 unseres Buches die Autoren gleiche Gewichte über einen zentrierten saisonalen gleitenden Durchschnitt anwenden. Das ist auch okay Zum Beispiel könnte ein vierteljährlich glatter zum Zeitpunkt t gefragt werden. Frak x frac x frac xt frac x frac x Ein monatlich glatter kann ein Gewicht von 113 auf alle Werte aus den Zeiten t-6 bis t6 anwenden. Der Code, den die Autoren auf Seite 72 verwenden, nutzt einen rep-Befehl, der einen Wert wiederholt eine gewisse Anzahl von Malen wiederholt. Sie verwenden nicht den Filterparameter im Filterbefehl. Beispiel 1 Vierteljährliche Bierproduktion in Australien In Lektion 1 und Lektion 4 sahen wir eine Reihe von vierteljährlichen Bierproduktionen in Australien. Der folgende R-Code erzeugt eine geglättete Reihe, die uns das Trendmuster sehen lässt, und zeichnet dieses Trendmuster auf demselben Graphen wie die Zeitreihe auf. Der zweite Befehl erzeugt und speichert die geglättete Serie im Objekt trendpattern. Beachten Sie, dass innerhalb des Filterbefehls der Parameter namens filter die Koeffizienten für unsere Glättung und die Seiten 2 ergibt, dass eine zentrierte glatte berechnet wird. (Beerprod. dat) trendpattern filter (beerprod, filter c (18, 14, 14, 14, 18), sides2) plot (beerprod, Typ b, Hauptverkehrsdurchschnitt jährlicher Trend) Linien (Trendmuster) Heres das Ergebnis: Wir Könnte das Trendmuster von den Datenwerten subtrahieren, um einen besseren Blick auf die Saisonalität zu erhalten. Heres, wie das geschehen würde: saisonale beerprod - trendpattern plot (saisonale, typ b, wichtig saisonale muster für bierproduktion) Das Ergebnis folgt: Eine weitere Möglichkeit zur Glättung von Serien, um den Trend zu sehen, ist der einseitige Filter Trendpattern2 Filter (Beerprod, Filter c (14, 14, 14, 14), Seiten1) Damit ist der geglättete Wert der Durchschnitt des vergangenen Jahres. Beispiel 2 U. S. Monatliche Arbeitslosigkeit In der Hausaufgabe für Woche 4 sahen Sie eine monatliche Reihe von U. S. Arbeitslosigkeit für 1948-1978. Heres eine Glättung getan, um den Trend zu betrachten. Trendunemploy Filter (arbeitslos, filterc (124,112,112,112,112,112,112,112,124), side2) trendunemploy ts (trendunemploy, start c (1948,1), freq 12) plot (trendunemploy, mainTrend in U. S. Arbeitslosigkeit, 1948-1978, xlab Jahr) Nur der geglättete Trend ist aufgetragen. Der zweite Befehl identifiziert die Kalenderzeitmerkmale der Serie. Das macht die Handlung eine sinnvollere Achse. Die Handlung folgt. Für nicht-saisonale Serien, Sie arent gebunden, um über eine bestimmte Spanne zu glätten. Für die Glättung sollten Sie mit gleitenden Durchschnitten verschiedener Spannen experimentieren. Diese Zeitspannen könnten relativ kurz sein. Das Ziel ist es, die rauen Kanten zu klopfen, um zu sehen, welcher Trend oder Muster dort sein könnte. Andere Glättungsmethoden (Abschnitt 2.4) Abschnitt 2.4 beschreibt mehrere anspruchsvolle und nützliche Alternativen zur gleitenden durchschnittlichen Glättung. Die Details können skizzenhaft erscheinen, aber das ist okay, weil wir nicht in vielen Details für diese Methoden verstoßen wollen. Von den alternativen Methoden, die in Abschnitt 2.4 beschrieben sind, kann eine niedrigere (lokal gewichtete Regression) am weitesten verbreitet sein. Beispiel 2 Fortsetzung Die folgende Kurve ist geglättet Trendlinie für die U. S. Unemployment-Serie, die mit einem lowess glatter, in dem eine erhebliche Menge (23) trug zu jeder geglätteten Schätzung. Beachten Sie, dass dies die Serie aggressiver geglättet hat als der gleitende Durchschnitt. Die Arbeitsgebiete waren arbeitslose ts (Arbeitslosigkeit, Start c (1948,1), freq12) Plot (lowess (arbeitslos, f 23), Haupt-Lowess-Glättung des US-Arbeitslosigkeits-Tendenz) Einzelne Exponential-Glättung Die grundlegende Prognosegleichung für eine einzelne exponentielle Glättung ist oft Als Hut alpha xt (1-alpha) Hut t Text Wir prognostizieren den Wert von x zum Zeitpunkt t1 eine gewichtete Kombination des beobachteten Wertes zum Zeitpunkt t und dem prognostizierten Wert zum Zeitpunkt t. Obwohl die Methode als Glättungsmethode bezeichnet wird, wird sie hauptsächlich für die kurzfristige Vorhersage verwendet. Der Wert wird als Glättungskonstante bezeichnet. Aus irgendeinem Grund ist 0,2 eine beliebte Standardauswahl von Programmen. Das ist ein Gewicht von 0,2 auf die jüngste Beobachtung und ein Gewicht von 1 .2 .8 auf die jüngste Prognose. Bei einem relativ kleinen Wert wird die Glättung relativ umfangreicher sein. Bei einem relativ großen Wert ist die Glättung relativ weniger umfangreich, da mehr Gewicht auf den beobachteten Wert gesetzt wird. Dies ist eine einfache einstufige Vorhersagemethode, die auf den ersten Blick kein Modell für die Daten zu verlangen scheint. In der Tat ist diese Methode gleichbedeutend mit der Verwendung eines ARIMA (0,1,1) Modells ohne Konstante. Das optimale Verfahren besteht darin, ein ARIMA (0,1,1) Modell an den beobachteten Datensatz anzupassen und die Ergebnisse zu verwenden, um den Wert von zu bestimmen. Dies ist optimal im Sinne der Erstellung der besten für die bereits beobachteten Daten. Obwohl das Ziel Glättung und ein Schritt voraus Prognose ist, bringt die Äquivalenz zum ARIMA (0,1,1) Modell einen guten Punkt. Wir sollten nicht blind auf exponentielle Glättung anwenden, weil der zugrunde liegende Prozess nicht gut durch eine ARIMA (0,1,1) modelliert werden kann. ARIMA (0,1,1) und exponentielle Glättungsäquivalenz Betrachten wir eine ARIMA (0,1,1) mit Mittelwert 0 für die ersten Differenzen xt - x t-1: beginnen Hasverstärker xt theta1 wt amp amp xt theta1 (xt - hat t) amp amp (1 theta1) xt - theta1hat neigen dazu. Wenn wir (1 1) und damit - (1) 1, so sehen wir die Äquivalenz der Gleichung (1) oben. Warum die Methode aufgerufen wird Exponentielle Glättung Dies ergibt die folgenden: Beginn Hut Amp-Amp Alpha xt (1-Alpha) Alpha x (1-Alpha) Hut Amp-Alpha xt Alpha (1-Alpha) x (1-Alpha) 2hat Ende Weiter Auf diese Weise durch sukzessives Ersetzen des prognostizierten Wertes auf der rechten Seite der Gleichung. Dies führt zu: Hut alpha xt alpha (1-alpha) x alpha (1-alpha) 2 x Punkte alpha (1-alpha) jx Punkte alpha (1-alpha) x1 Text Gleichung 2 zeigt, dass der prognostizierte Wert ein gewichteter Durchschnitt ist Von allen vergangenen Werten der Serie, mit exponentiell wechselnden Gewichten, wie wir in die Serie zurückkehren. Optimale Exponentialglättung in R Grundsätzlich passen wir einfach eine ARIMA (0,1,1) an die Daten und bestimmen den Koeffizienten. Wir können die Passform des Glattes untersuchen, indem wir die vorhergesagten Werte mit der aktuellen Serie vergleichen. Exponentielle Glättung neigt dazu, mehr als ein Prognosewerkzeug als ein echtes glatter verwendet zu werden, also sahen, um zu sehen, ob wir eine gute Passform haben. Beispiel 3 N 100 monatliche Beobachtungen des Logarithmus eines Ölpreisindex in den Vereinigten Staaten. Die Datenreihe ist: Ein ARIMA (0,1,1) passen in R gab einen MA (1) Koeffizienten 0,3877. Also (1 1) 1.3877 und 1-0.3877. Die exponentielle Glättungsvorhersagegleichung ist Hut 1.3877xt - 0.3877hat t Zur Zeit 100 ist der beobachtete Wert der Reihe x 100 0.86601. Der vorhergesagte Wert für die Serie zu diesem Zeitpunkt ist also die Prognose für die Zeit 101 ist Hut 1.3877x - 0.3877hat 1.3877 (0.86601) -0.3877 (0.856789) 0.8696 Im Folgenden ist, wie gut die glatter passt die Serie. Es ist eine gute Passform. Das ist ein gutes Zeichen für die Prognose, der Hauptzweck für diese glattere. Hier werden die Befehle verwendet, um die Ausgabe für dieses Beispiel zu generieren: Ölindex-Scan (oildata. dat) Plot (Ölindex, Typ b, Hauptprotokoll der Ölindex-Serie) expsmoothfit arima (Ölindex, Ordnung c (0,1,1)) expsmoothfit Um zu sehen, dass die Arima-Ergebnisse die Ölvorhersage vorhergesagt haben (extrozessive Residuale prognostizierte Werte) (Ölindex, Typb, Hauptspiegelung des Log of Oil Index) Zeilen (Vorhersagen) 1.3877oilindex100-0.3877predicteds100 Prognose für die Zeit 101 Doppelte Exponentialglättung Doppelte exponentielle Glättung könnte bei theres verwendet werden Trend (entweder Langzeit oder kurzer Lauf), aber keine Saisonalität. Im Wesentlichen schafft die Methode eine Prognose durch die Kombination von exponentiell geglätteten Schätzungen des Trends (Steigung einer Geraden) und der Ebene (grundsätzlich der Abzweigung einer Geraden). Zwei verschiedene Gewichte oder Glättungsparameter werden verwendet, um diese beiden Komponenten zu jeder Zeit zu aktualisieren. Der geglättete Pegel entspricht mehr oder weniger einer einfachen exponentiellen Glättung der Datenwerte und der geglättete Trend ist mehr oder weniger gleichbedeutend mit einer einfachen exponentiellen Glättung der ersten Differenzen. Die Vorgehensweise entspricht der Montage eines ARIMA (0,2,2) Modells, ohne Konstante kann es mit einer ARIMA (0,2,2) Passung durchgeführt werden. (1-B) 2 xt (1 & ndash; 1B theta 2 B 2) Gew. NavigationMoving Average Filter (MA Filter) Loading. Der gleitende Durchschnittsfilter ist ein einfacher Low Pass FIR (Finite Impulse Response) Filter, der üblicherweise zum Glätten eines Arrays von abgetastetem Datensignal verwendet wird. Es nimmt M Abtastwerte der Eingabe zu einer Zeit und nehmen den Durchschnitt dieser M-Samples und erzeugt einen einzelnen Ausgangspunkt. Es ist eine sehr einfache LPF (Low Pass Filter) Struktur, die für Wissenschaftler und Ingenieure praktisch ist, um unerwünschte geräuschvolle Komponenten aus den beabsichtigten Daten zu filtern. Wenn die Filterlänge zunimmt (der Parameter M), erhöht sich die Glätte des Ausgangs, während die scharfen Übergänge in den Daten zunehmend stumpf werden. Dies impliziert, dass dieser Filter eine ausgezeichnete Zeitbereichsantwort hat, aber eine schlechte Frequenzantwort. Der MA-Filter führt drei wichtige Funktionen aus: 1) Es nimmt M Eingangspunkte, berechnet den Mittelwert dieser M-Punkte und erzeugt einen einzelnen Ausgangspunkt 2) Aufgrund der Berechnungsberechnungen. Der Filter führt eine bestimmte Verzögerung ein 3) Der Filter fungiert als Tiefpassfilter (mit schlechter Frequenzbereichsantwort und einer guten Zeitbereichsantwort). Matlab-Code: Nach dem Matlab-Code simuliert die Zeitbereichsantwort eines M-Punkt-Moving Average-Filters und zeichnet auch den Frequenzgang für verschiedene Filterlängen auf. Zeit Domain Response: Auf dem ersten Plot haben wir die Eingabe, die in den gleitenden Mittelfilter geht. Der Eingang ist laut und unser Ziel ist es, den Lärm zu reduzieren. Die nächste Abbildung ist die Ausgangsreaktion eines 3-Punkt-Moving Average-Filters. Es kann aus der Figur abgeleitet werden, dass der 3-Punkt-Moving Average-Filter nicht viel beim Ausfiltern des Rauschens getan hat. Wir erhöhen die Filterhähne auf 51 Punkte und wir können sehen, dass das Rauschen in der Ausgabe viel reduziert hat, was in der nächsten Abbildung dargestellt ist. Wir erhöhen die Hähne weiter auf 101 und 501 und wir können beobachten, dass - obwohl das Rauschen fast null ist, die Übergänge drastisch abgestumpft werden (beobachten Sie die Steigung auf beiden Seiten des Signals und vergleichen Sie sie mit dem idealen Ziegelwandübergang in Unsere Eingabe). Frequenzgang: Aus dem Frequenzgang kann behauptet werden, dass der Roll-off sehr langsam ist und die Stoppbanddämpfung nicht gut ist. Angesichts dieser Stoppbanddämpfung kann eindeutig der gleitende Durchschnittsfilter kein Frequenzband von einem anderen trennen. Da wir wissen, dass eine gute Leistung im Zeitbereich zu schlechter Leistung im Frequenzbereich führt und umgekehrt. Kurz gesagt, der gleitende Durchschnitt ist ein außergewöhnlich guter Glättungsfilter (die Aktion im Zeitbereich), aber ein außergewöhnlich schlechtes Tiefpassfilter (die Aktion im Frequenzbereich) Externe Links: Empfohlene Bücher: Primäre Seitenleiste

No comments:

Post a Comment