Gleitende durchschnittliche Vorhersage Einführung. Wie Sie vielleicht vermuten, sehen wir uns einige der primitivsten Ansätze zur Prognose an. Aber hoffentlich sind dies zumindest eine lohnende Einführung in einige der Computing-Fragen im Zusammenhang mit der Umsetzung von Prognosen in Tabellenkalkulationen. In diesem Sinne werden wir fortfahren, indem wir am Anfang beginnen und mit Moving Average Prognosen arbeiten. Gleitende durchschnittliche Prognosen. Jeder ist mit gleitenden durchschnittlichen Prognosen vertraut, unabhängig davon, ob sie glauben, dass sie sind. Alle College-Studenten machen sie die ganze Zeit. Denken Sie an Ihre Testergebnisse in einem Kurs, wo Sie vier Tests während des Semesters haben werden. Nehmen wir an, Sie haben eine 85 bei Ihrem ersten Test. Was würdest du für deinen zweiten Test-Score vorhersagen Was denkst du, dein Lehrer würde für deinen nächsten Test-Score voraussagen Was denkst du, deine Freunde können für deinen nächsten Test-Score voraussagen Was denkst du, deine Eltern können für deinen nächsten Test-Score voraussagen All das Blabbing, das du mit deinen Freunden und Eltern machen kannst, sie und deinem Lehrer sind sehr wahrscheinlich zu erwarten, dass du etwas im Bereich der 85 bekommst, die du gerade bekommen hast. Nun, jetzt können wir davon ausgehen, dass trotz Ihrer Selbst-Förderung zu Ihren Freunden, Sie über-schätzen Sie sich selbst und Figur können Sie weniger für den zweiten Test zu studieren und so erhalten Sie eine 73. Nun, was sind alle betroffenen und unbekümmert zu gehen Erwarten Sie auf Ihrem dritten Test zu bekommen Es gibt zwei sehr wahrscheinlich Ansätze für sie eine Schätzung zu entwickeln, unabhängig davon, ob sie es mit Ihnen teilen wird. Sie können sich selbst sagen, "dieser Kerl ist immer bläst Rauch über seine smarts. Er wird noch 73, wenn er glücklich ist. Vielleicht werden die Eltern versuchen, mehr unterstützend zu sein und zu sagen, quotWell, so weit hast du eine 85 und eine 73 bekommen, also vielleicht solltest du auf eine (85 73) 2 79 kommen. Ich weiß nicht, vielleicht, wenn du weniger feiern musst Und werent wedelte den Wiesel überall auf den Platz und wenn du anfing, viel mehr zu studieren, könntest du eine höhere Punktzahl bekommen. Diese beiden Schätzungen belegen tatsächlich durchschnittliche Prognosen. Die erste nutzt nur Ihre aktuellste Punktzahl, um Ihre zukünftige Leistung zu prognostizieren. Dies wird als eine gleitende durchschnittliche Prognose mit einer Periode von Daten bezeichnet. Die zweite ist auch eine gleitende durchschnittliche Prognose, aber mit zwei Perioden von Daten. Nehmen wir an, dass all diese Leute, die auf deinem großen Verstand zerschlagen sind, dich irgendwie verärgert haben und du entscheidest, den dritten Test aus deinen eigenen Gründen gut zu machen und eine höhere Punktzahl vor deinem Quoten zu setzen. Sie nehmen den Test und Ihre Partitur ist eigentlich ein 89 Jeder, auch Sie selbst, ist beeindruckt. So, jetzt haben Sie die endgültige Prüfung des Semesters kommen und wie üblich fühlen Sie sich die Notwendigkeit, goad jeder in die Herstellung ihrer Vorhersagen darüber, wie youll auf den letzten Test zu tun. Nun, hoffentlich sehen Sie das Muster. Nun, hoffentlich kannst du das Muster sehen. Was glaubst du, ist die genaueste Pfeife während wir arbeiten. Jetzt kehren wir zu unserer neuen Reinigungsfirma zurück, die von deiner entfremdeten Halbschwester namens Whistle während wir arbeiten. Sie haben einige vergangene Verkaufsdaten, die durch den folgenden Abschnitt aus einer Kalkulationstabelle dargestellt werden. Zuerst stellen wir die Daten für eine dreistellige gleitende durchschnittliche Prognose vor. Der Eintrag für Zelle C6 sollte jetzt sein. Du kannst diese Zellformel auf die anderen Zellen C7 bis C11 kopieren. Beachten Sie, wie sich der Durchschnitt über die aktuellsten historischen Daten bewegt, aber genau die drei letzten Perioden verwendet, die für jede Vorhersage verfügbar sind. Sie sollten auch bemerken, dass wir nicht wirklich brauchen, um die Vorhersagen für die vergangenen Perioden zu machen, um unsere jüngsten Vorhersage zu entwickeln. Dies unterscheidet sich definitiv von dem exponentiellen Glättungsmodell. Ive enthalten die quotpast Vorhersagen, weil wir sie in der nächsten Webseite verwenden, um die Vorhersagegültigkeit zu messen. Jetzt möchte ich die analogen Ergebnisse für eine zweistufige gleitende durchschnittliche Prognose vorstellen. Der Eintrag für Zelle C5 sollte jetzt sein. Du kannst diese Zellformel in die anderen Zellen C6 bis C11 kopieren. Beachten Sie, wie jetzt nur die beiden letzten Stücke der historischen Daten für jede Vorhersage verwendet werden. Wieder habe ich die quotpast-Vorhersagen für illustrative Zwecke und für die spätere Verwendung in der Prognose-Validierung enthalten. Einige andere Dinge, die wichtig sind, um zu bemerken. Für eine m-Periode gleitende durchschnittliche Prognose werden nur die m aktuellsten Datenwerte verwendet, um die Vorhersage zu machen. Nichts anderes ist nötig Für eine m-Periode gleitende durchschnittliche Prognose, wenn Sie quotpast Vorhersagen quot, bemerken, dass die erste Vorhersage in Periode m 1 auftritt. Beide Themen werden sehr wichtig sein, wenn wir unseren Code entwickeln. Entwicklung der beweglichen Mittelfunktion. Jetzt müssen wir den Code für die gleitende Mittelprognose entwickeln, die flexibler genutzt werden kann. Der Code folgt. Beachten Sie, dass die Eingaben für die Anzahl der Perioden gelten, die Sie in der Prognose und dem Array von historischen Werten verwenden möchten. Sie können es in der beliebigen Arbeitsmappe speichern. Funktion MovingAverage (Historical, NumberOfPeriods) Als Single Declaring und Initialisierung von Variablen Dim Item als Variant Dim Zähler als Integer Dim Akkumulation als Single Dim HistoricalSize als Integer Initialisierung von Variablen Counter 1 Akkumulation 0 Bestimmen der Größe von Historical Array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Akkumulation der entsprechenden Anzahl der aktuellsten bisher beobachteten Werte Akkumulation Akkumulation Historical (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Der Code wird in der Klasse erklärt. Sie möchten die Funktion auf der Kalkulationstabelle positionieren, damit das Ergebnis der Berechnung erscheint, wo es wie folgt aussehen soll. Prognoseberechnungsbeispiele A.1 Prognoseberechnungsmethoden Es sind zwölf Methoden zur Berechnung von Prognosen verfügbar. Die meisten dieser Methoden sorgen für eine begrenzte Benutzerkontrolle. Zum Beispiel könnte das Gewicht der letzten historischen Daten oder der Datumsbereich der in den Berechnungen verwendeten historischen Daten angegeben werden. Die folgenden Beispiele zeigen das Berechnungsverfahren für jede der verfügbaren Prognosemethoden, wobei ein identischer Satz historischer Daten vorliegt. Die folgenden Beispiele verwenden die gleichen Verkaufs - und Verkaufsdaten von 2004 und 2005, um eine Umsatzprognose von 2006 zu erzielen. Neben der Prognoseberechnung enthält jedes Beispiel eine simulierte Prognose für die Dauer von drei Monaten (Verarbeitungsoption 19 3), die dann für prozentuale Genauigkeit und mittlere Absolutabweichungsberechnungen verwendet wird (tatsächlicher Umsatz im Vergleich zur simulierten Prognose). A.2 Prognoseleistungsbewertungskriterien Abhängig von Ihrer Auswahl an Verarbeitungsoptionen und den in den Verkaufsdaten vorhandenen Trends und Mustern werden einige Prognosemethoden besser als andere für einen bestimmten historischen Datensatz durchgeführt. Eine für ein Produkt geeignete Vorhersagemethode ist möglicherweise nicht für ein anderes Produkt geeignet. Es ist auch unwahrscheinlich, dass eine Prognosemethode, die auf einer Stufe des Produktlebenszyklus gute Ergebnisse liefert, während des gesamten Lebenszyklus angemessen bleibt. Sie können zwischen zwei Methoden wählen, um die aktuelle Leistung der Prognosemethoden zu bewerten. Dies sind mittlere Absolute Abweichung (MAD) und Prozent der Genauigkeit (POA). Beide dieser Leistungsbewertungsmethoden erfordern historische Verkaufsdaten für einen vom Benutzer festgelegten Zeitraum. Diese Zeitspanne wird als Halteperiode oder Perioden am besten passt (PBF). Die Daten in diesem Zeitraum dienen als Grundlage für die Empfehlung, welche der Prognosemethoden bei der nächsten Prognoseprojektion verwendet werden sollen. Diese Empfehlung ist für jedes Produkt spezifisch und kann von einer Prognoseerzeugung zur nächsten wechseln. Die beiden prognostizierten Leistungsbewertungsmethoden werden in den Seiten nach den Beispielen der zwölf Prognosemethoden gezeigt. A.3 Methode 1 - angegebener Prozentsatz über letztes Jahr Diese Methode multipliziert die Verkaufsdaten des Vorjahres mit einem vom Anwender angegebenen Faktor, zB 1,10 für 10 Zunahme oder 0,97 für 3 Abnahmen. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus der benutzerdefinierten Anzahl von Zeiträumen zur Auswertung der Prognoseleistung (Verarbeitungsoption 19). A.4.1 Prognoseberechnung Umfang des Verkaufsverlaufs bei der Berechnung des Wachstumsfaktors (Verarbeitungsoption 2a) 3 in diesem Beispiel. Summe der letzten drei Monate des Jahres 2005: 114 119 137 370 Summe der gleichen drei Monate für das Vorjahr: 123 139 133 395 Der berechnete Faktor 370395 0.9367 Berechnen Sie die Prognosen: Januar 2005 Umsatz 128 0.9367 119.8036 oder ca. 120. Februar 2005 Umsatz 117 0.9367 109.5939 oder ca. 110. März 2005 Umsatz 115 0.9367 107.7205 oder ca. 108 A.4.2 Simulierte Prognoseberechnung Summe der drei Monate 2005 vor der Halteperiode (Juli, Aug, September): 129 140 131 400 Summe der gleichen drei Monate für die Vorjahr: 141 128 118 387 Der berechnete Faktor 400387 1.033591731 Berechnen der simulierten Prognose: Oktober 2004 Umsatz 123 1.033591731 127.13178 November 2004 Umsatz 139 1.033591731 143.66925 Dezember 2004 Umsatz 133 1.033591731 137.4677 A.4.3 Prozent der Genauigkeitsberechnung POA (127.13178 143.66925 137.4677) (114 119 137) 100 408,26873 370 100 110.3429 A.4.4 Mittlere Absolutabweichungsberechnung MAD (127.13178 - 114 143.66925 - 119 137.4677- 137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Methode 3 - Letztes Jahr zu diesem Jahr Diese Methode Kopiert die Verkaufsdaten vom Vorjahr auf das nächste Jahr. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der für die Auswertung der Prognoseleistung festgelegten Zeiträume (Verarbeitungsoption 19). A.6.1 Prognoseberechnung Anzahl der Perioden, die in den Durchschnitt einbezogen werden sollen (Verarbeitungsoption 4a) 3 in diesem Beispiel Für jeden Monat der Prognose durchschnittlich die letzten drei Monate Daten. Januar-Prognose: 114 119 137 370, 370 3 123.333 oder 123 Februar Prognose: 119 137 123 379, 379 3 126.333 oder 126 März Vorhersage: 137 123 126 379, 386 3 128.667 oder 129 A.6.2 Simulierte Prognoseberechnung Oktober 2005 Umsatz (129 140 131) 3 133.3333 November 2005 Umsatz (140 131 114) 3 128.3333 Dezember 2005 Umsatz (131 114 119) 3 121.3333 A.6.3 Prozent der Genauigkeitsberechnung POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Mittleres Absolut Abweichungsberechnung MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Methode 5 - Lineare Approximation Lineare Approximation berechnet einen Trend auf der Grundlage von zwei Erfolgsdaten. Diese beiden Punkte definieren eine gerade Trendlinie, die in die Zukunft projiziert wird. Verwenden Sie diese Methode mit Vorsicht, da Langstreckenprognosen durch kleine Änderungen in nur zwei Datenpunkten genutzt werden. Erforderliche Verkaufsgeschichte: Die Anzahl der Perioden, die in die Regression einbezogen werden (Verarbeitungsoption 5a), plus 1 plus die Anzahl der Zeiträume für die Bewertung der Prognoseleistung (Verarbeitungsoption 19). A.8.1 Prognoseberechnung Anzahl der Perioden, die in die Regression einbezogen werden sollen (Verarbeitungsoption 6a) 3 in diesem Beispiel Für jeden Monat der Prognose fügen Sie die Zunahme oder Abnahme während der angegebenen Zeiträume vor der Halteperiode der vorherigen Periode hinzu. Durchschnitt der letzten drei Monate (114 119 137) 3 123.3333 Zusammenfassung der letzten drei Monate mit Gewicht betrachtet (114 1) (119 2) (137 3) 763 Unterschied zwischen den Werten 763 - 123.3333 (1 2 3) 23 Verhältnis ( 12 22 32) - 2 3 14 - 12 2 Wert1 DifferenzRatio 232 11,5 Wert2 Durchschnitt - Wert1 Verhältnis 123.3333 - 11.5 2 100.3333 Prognose (1 n) Wert1 Wert2 4 11.5 100.3333 146.333 oder 146 Prognose 5 11.5 100.3333 157.8333 oder 158 Prognose 6 11.5 100.3333 169.3333 Oder 169 A.8.2 Simulierte Prognoseberechnung Oktober 2004 Umsatz: Durchschnitt der letzten drei Monate (129 140 131) 3 133.3333 Zusammenfassung der letzten drei Monate mit Gewicht (129 1) (140 2) (131 3) 802 Unterschied zwischen den Werte 802 - 133.3333 (1 2 3) 2 Verhältnis (12 22 32) - 2 3 14 - 12 2 Wert1 DifferenzRatio 22 1 Wert2 Durchschnitt - Wert1 Verhältnis 133.3333 - 1 2 131.3333 Prognose (1 n) Wert1 Wert2 4 1 131.3333 135.3333 November 2004 Umsatz Durchschnitt der letzten drei Monate (140 131 114) 3 128.3333 Zusammenfassung der letzten drei Monate mit Gewichtsbetrachtung (140 1) (131 2) (114 3) 744 Unterschied zwischen den Werten 744 - 128.3333 (1 2 3) -25.9999 Wert1 UnterschiedRatio -25.99992 -12.9999 Wert2 Durchschnitt - Wert1 Verhältnis 128.3333 - (-12.9999) 2 154.3333 Prognose 4 -12.9999 154.3333 102.3333 Dezember 2004 Umsatz Durchschnitt der letzten drei Monate (131 114 119) 3 121.3333 Zusammenfassung der letzten drei Monate mit Gewicht berücksichtigt (131 1) (114 2) (119 3) 716 Differenz zwischen den Werten 716 - 121.3333 (1 2 3) -11.9999 Wert1 DifferenzRatio -11.99992 -5.9999 Wert2 Durchschnitt - Wert1 Verhältnis 121.3333 - (-5.9999) 2 133.3333 Prognose 4 (- 5.9999) 133.3333 109.3333 A.8.3 Prozent der Genauigkeitsberechnung POA (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 Mittlere Absolutabweichungsberechnung MAD (135.33 - 114 102.33 - 119 109.33 - 137) 3 21.88 A.9 Methode 7 - Zweite Grad Approximation Lineare Regression bestimmt Werte für a und b in der Prognoseformel Y a bX mit dem Ziel, eine Gerade an die Verkaufsgeschichte Daten anzupassen. Zweite Grad Approximation ist ähnlich. Dieses Verfahren bestimmt jedoch Werte für a, b und c in der Prognoseformel Y a bX cX2 mit dem Ziel, eine Kurve an die Verkaufsverlaufsdaten anzupassen. Diese Methode kann nützlich sein, wenn ein Produkt im Übergang zwischen den Phasen eines Lebenszyklus ist. Zum Beispiel, wenn ein neues Produkt von der Einführung in Wachstumsstadien bewegt, kann sich die Umsatzentwicklung beschleunigen. Wegen des Termes zweiter Ordnung kann sich die Prognose schnell an die Unendlichkeit wenden oder auf Null fallen (je nachdem, ob der Koeffizient c positiv oder negativ ist). Daher ist diese Methode nur kurzfristig sinnvoll. Prognosevorgaben: Die Formeln finden a, b und c, um eine Kurve auf genau drei Punkte zu passen. Sie spezifizieren n in der Verarbeitungsoption 7a, die Anzahl der Zeitperioden der Daten, die sich in jedem der drei Punkte ansammeln. In diesem Beispiel n 3. Daher werden die tatsächlichen Verkaufsdaten für April bis Juni in den ersten Punkt, Q1 zusammengefasst. Juli bis September werden zusammen addiert, um Q2 zu schaffen, und Oktober bis Dezember Summe zu Q3. Die Kurve wird an die drei Werte Q1, Q2 und Q3 angepasst. Erforderliche Verkaufsgeschichte: 3 n Perioden für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung (PBF) erforderlich sind. Anzahl der zu berücksichtigenden Perioden (Verarbeitungsoption 7a) 3 in diesem Beispiel Verwenden Sie die vorherigen (3 n) Monate in dreimonatigen Blöcken: Q1 (Apr - Jun) 125 122 137 384 Q2 (Jul - Sep) 129 140 131 400 Q3 ( Der nächste Schritt beinhaltet die Berechnung der drei Koeffizienten a, b und c, die in der Prognoseformel Y a bX cX2 (1) Q1 a bX cX2 (wobei X 1) abc (2) Q2 verwendet werden soll A bX cX2 (wobei X 2) a 2b 4c (3) Q3 a bX cX2 (wobei X 3) a 3b 9c die drei Gleichungen gleichzeitig lösen, um b, a und c zu finden: Subtrahieren Sie Gleichung (1) aus Gleichung (2) Und lösen für b (2) - (1) Q2 - Q1 b 3c Ersetzen Sie diese Gleichung für b in Gleichung (3) (3) Q3 a 3 (Q2 - Q1) - 3c c Schließlich ersetzen Sie diese Gleichungen für a und b in Gleichung (1) Q3 - 3 (Q2 - Q1) (q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2) 2 Die zweite Grad Approximation Methode berechnet a, b und c wie folgt: a Q3 (Q & sub3; - Q & sub1;) (Q & sub3; - Q & sub1;) (Q & sub3; - Q & sub1;) (3) (3) 400 - 384) - (3 -23) 85 Y a bX cX2 322 85X (-23) X2 Januar bis März Vorhersage (X4): (322 340 - 368) 3 2943 98 pro Periode April bis Juni Vorhersage (X5): ( 322 425 - 575) 3 57.333 oder 57 pro Periode Juli bis September Vorhersage (X6): (322 510 - 828) 3 1,33 oder 1 pro Periode Oktober bis Dezember (X7) (322 595 - 11273 -70 A.9.2 Simulierte Prognoseberechnung Oktober, November und Dezember 2004 Umsatz: Q1 (Jan - Mar) 360 Q2 (Apr - Jun) 384 Q3 (Jul - Sep) 400 a 400 - 3 (384 - 360) 328 c (400 - 384) (360 - 384) ) 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Prozent der Genauigkeitsberechnung POA (136 136 136) (114 119 137) 100 110,27 A.9.4 Mittelwert Absolute Abweichungsberechnung MAD (136 - 114 136 - 119 136 - 137) 3 13.33 A.10 Methode 8 - Flexible Methode Die Flexible Methode (Prozent über n Monate vorher) ähnelt Methode 1, Prozent über letztes Jahr. Beide Methoden vervielfachen Verkaufsdaten aus einem früheren Zeitraum durch einen vom Benutzer angegebenen Faktor, dann projektieren sie in die Zukunft. In der Percent Over Last Year Methode basiert die Projektion auf Daten aus dem gleichen Zeitraum im Vorjahr. Die Flexible Methode fügt die Möglichkeit hinzu, einen anderen Zeitraum als denselben Zeitraum im letzten Jahr anzugeben, um als Grundlage für die Berechnungen zu verwenden. Multiplikationsfaktor Geben Sie zum Beispiel 1.15 in der Verarbeitungsoption 8b an, um die bisherigen Verkaufsverlaufsdaten um 15 zu erhöhen. Basisperiode. Beispielsweise wird n 3 die erste Prognose auf die Verkaufsdaten im Oktober 2005 stützen. Mindestverkaufsgeschichte: Der Benutzer spezifizierte die Anzahl der Perioden zurück zum Basiszeitraum sowie die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung erforderlich sind ( PBF). A.10.4 Mittlere Absolutabweichungsberechnung MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Methode 9 - Gewichteter bewegter Durchschnitt Die Methode der gewichteten beweglichen Mittelwerte (WMA) ähnelt Methode 4, Moving Average (MA). Allerdings können Sie mit dem Weighted Moving Average den historischen Daten ungleiche Gewichte zuordnen. Die Methode berechnet einen gewichteten Durchschnitt der letzten Verkaufsgeschichte, um kurzfristig eine Projektion zu erreichen. Neuere Daten werden in der Regel ein größeres Gewicht als ältere Daten zugewiesen, so dass WMA besser auf Verschiebungen in der Ebene des Umsatzes reagiert. Allerdings treten prognostizierte Vorurteile und systematische Fehler immer noch auf, wenn die Produktverkaufsgeschichte starke Trend - oder Saisonmuster aufweist. Diese Methode funktioniert besser für kurzfristige Prognosen von reifen Produkten anstatt für Produkte in den Wachstums - oder Obsoleszenzstadien des Lebenszyklus. N die Anzahl der Perioden der Verkaufsgeschichte, die in der Prognoseberechnung verwendet werden soll. Geben Sie z. B. n 3 in der Verarbeitungsoption 9a an, um die letzten drei Perioden als Grundlage für die Projektion in den nächsten Zeitraum zu verwenden. Ein großer Wert für n (z. B. 12) erfordert mehr Verkaufsgeschichte. Es führt zu einer stabilen Prognose, wird aber langsam zu einer Verschiebung des Umsatzniveaus kommen. Auf der anderen Seite wird ein kleiner Wert für n (wie z. B. 3) schneller auf Verschiebungen in der Ebene des Umsatzes reagieren, aber die Prognose kann so weit schwanken, dass die Produktion nicht auf die Variationen reagieren kann. Das Gewicht, das jedem der historischen Datenperioden zugeordnet ist. Die zugeteilten Gewichte müssen auf 1,00 betragen. Zum Beispiel, wenn n 3, Gewichte von 0,6, 0,3 und 0,1 zuordnen, wobei die letzten Daten das größte Gewicht erhalten. Mindestens erforderliche Verkaufsgeschichte: n plus die Anzahl der Zeiträume, die für die Auswertung der Prognoseleistung (PBF) erforderlich sind. MAD (133,5 - 114 121,7 - 119 118,7 - 137) 3 13,5 A.12 Methode 10 - Lineare Glättung Diese Methode ähnelt Methode 9, Weighted Moving Average (WMA). Jedoch wird anstelle der willkürlichen Zuordnung von Gewichten zu den historischen Daten eine Formel verwendet, um Gewichte zuzuordnen, die linear abfallen und auf 1,00 summieren. Die Methode berechnet dann einen gewichteten Durchschnitt der letzten Verkaufsgeschichte, um kurzfristig eine Projektion zu erreichen. Wie bei allen linearen gleitenden durchschnittlichen Prognosetechniken zutreffend, treten prognostizierte Vorurteile und systematische Fehler auf, wenn die Produktverkaufsgeschichte starke Trend - oder Saisonmuster aufweist. Diese Methode funktioniert besser für kurzfristige Prognosen von reifen Produkten anstatt für Produkte in den Wachstums - oder Obsoleszenzstadien des Lebenszyklus. N die Anzahl der Perioden der Verkaufsgeschichte, die in der Prognoseberechnung verwendet werden soll. Dies ist in der Verarbeitungsoption 10a angegeben. Geben Sie z. B. n 3 in der Verarbeitungsoption 10b an, um die letzten drei Perioden als Grundlage für die Projektion in den nächsten Zeitraum zu verwenden. Das System ordnet die Gewichte automatisch den historischen Daten zu, die linear abfallen und auf 1,00 summieren. Zum Beispiel, wenn n 3, wird das System Gewichte von 0,5, 0,3333 und 0,1 zuweisen, wobei die letzten Daten das größte Gewicht erhalten. Mindestens erforderliche Verkaufsgeschichte: n plus die Anzahl der Zeiträume, die für die Auswertung der Prognoseleistung (PBF) erforderlich sind. A.12.1 Prognoseberechnung Anzahl der Perioden, die in den Glättungsdurchschnitt einbezogen werden (Verarbeitungsoption 10a) 3 in diesem Beispiel Verhältnis für einen Zeitraum vor 3 (n2 n) 2 3 (32 3) 2 36 0,5 Verhältnis für zwei Perioden vorher 2 (n2 n ) 2 2 (32 3) 2 26 0.3333 .. Verhältnis für drei Perioden vor 1 (n2 n) 2 1 (32 3) 2 16 0.1666 .. Januar-Prognose: 137 0,5 119 13 114 16 127,16 oder 127 Februar Vorhersage: 127 0,5 137 13 119 16 129 März-Prognose: 129 0,5 127 13 137 16 129,666 oder 130 A.12.2 Simulierte Prognoseberechnung Oktober 2004 Umsatz 129 16 140 26 131 36 133.6666 November 2004 Umsatz 140 16 131 26 114 36 124 Dezember 2004 Umsatz 131 16 114 26 119 36 119.3333 A.12.3 Prozent der Genauigkeitsberechnung POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 Mittlere Absolutabweichungsberechnung MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Methode 11 - Exponentielle Glättung Diese Methode ähnelt Methode 10, Lineare Glättung. Bei der linearen Glättung weist das System den historischen Daten, die linear abweichen, Gewichte zu. Bei der exponentiellen Glättung weist das System Gewichte auf, die exponentiell abklingen. Die exponentielle Glättungsvorhersagegleichung lautet: Prognose a (vorherige Istverkäufe) (1 - a) vorherige Prognose Die Prognose ist ein gewichteter Durchschnitt des tatsächlichen Umsatzes aus der Vorperiode und der Prognose aus der Vorperiode. A ist das Gewicht auf den tatsächlichen Umsatz für die vorherige Periode angewendet. (1 - a) ist das Gewicht für die Vorhersage für die vorherige Periode angewendet. Gültige Werte für einen Bereich von 0 bis 1 und liegen in der Regel zwischen 0,1 und 0,4. Die Summe der Gewichte beträgt 1,00. A (1 - a) 1 Sie sollten einen Wert für die Glättungskonstante, a. Wenn Sie keine Werte für die Glättungskonstante zuordnen, berechnet das System einen angenommenen Wert, der auf der Anzahl der in der Verarbeitungsoption 11a angegebenen Perioden der Verkaufshistorie basiert. A die Glättungskonstante, die bei der Berechnung des geglätteten Durchschnitts für das allgemeine Niveau oder die Größe des Umsatzes verwendet wird. Gültige Werte für einen Bereich von 0 bis 1. n der Bereich der Verkaufsgeschichte Daten in die Berechnungen enthalten. Im Allgemeinen reicht ein Jahr der Verkaufsgeschichte Daten aus, um das allgemeine Umsatzniveau abzuschätzen. Für dieses Beispiel wurde ein kleiner Wert für n (n 3) gewählt, um die manuellen Berechnungen zu reduzieren, die zur Überprüfung der Ergebnisse erforderlich sind. Eine exponentielle Glättung kann eine Prognose erzeugen, die auf so wenig wie einem historischen Datenpunkt basiert. Mindestens erforderliche Verkaufsgeschichte: n plus die Anzahl der Zeiträume, die für die Auswertung der Prognoseleistung (PBF) erforderlich sind. A.13.1 Prognoseberechnung Die Anzahl der Perioden, die in den Glättungsdurchschnitt einbezogen werden sollen (Verarbeitungsoption 11a) 3 und Alpha-Faktor (Verarbeitungsoption 11b) leer in diesem Beispiel ein Faktor für die ältesten Verkaufsdaten 2 (11) oder 1, wenn alpha angegeben ist Ein Faktor für die 2. ältesten Verkaufsdaten 2 (12) oder alpha, wenn alpha angegeben ist ein Faktor für die 3. ältesten Verkaufsdaten 2 (13) oder alpha, wenn alpha angegeben ist ein Faktor für die letzten Verkaufsdaten 2 (1n) , Oder alpha, wenn alpha angegeben ist November Sm. Durchschn. A (Oktober aktuell) (1 - a) Oktober Sm. Durchschn. 1 114 0 0 114 Dezember Sm. Durchschn. A (November Tatsächlich) (1 - a) November Sm. Durchschn. 23 119 13 114 117.3333 Januar Vorhersage a (Dezember aktuell) (1 - a) Dezember Sm. Durchschn. 24 137 24 117.3333 127.16665 oder 127 Februar Vorhersage Januar Vorhersage 127 März Vorhersage Januar Vorhersage 127 A.13.2 Simulierte Prognoseberechnung Juli 2004 Sm. Durchschn. 22 129 129 August Sm. Durchschn. 23 140 13 129 136.3333 September Sm. Durchschn. 24 131 24 136.3333 133.6666 Oktober 2004 Verkauf Sep Sm. Durchschn. 133.6666 August 2004 Sm. Durchschn. 22 140 140 September Sm. Durchschn. 23 131 13 140 134 Oktober Sm. Durchschn. 24 114 24 134 124 November 2004 Verkauf Sep Sm. Durchschn. 124 September 2004 Sm. Durchschn. 22 131 131 Oktober Sm. Durchschn. 23 114 13 131 119.6666 November Sm. Durchschn. 24 119 24 119.6666 119.3333 Dezember 2004 Verkauf Sep Sm. Durchschn. 119.3333 A.13.3 Prozent der Genauigkeitsberechnung POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Mittlere Absolutabweichungsberechnung MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Methode 12 - Exponentielle Glättung Mit Trend und Saisonalität Diese Methode ähnelt Methode 11, Exponentielle Glättung darin, dass ein geglätteter Durchschnitt berechnet wird. Allerdings enthält das Verfahren 12 auch einen Begriff in der Prognosegleichung, um einen geglätteten Trend zu berechnen. Die Prognose setzt sich aus einer geglätteten gemittelten gemittelten für einen linearen Trend zusammen. Wenn in der Verarbeitungsoption angegeben, wird die Prognose auch für Saisonalität angepasst. A die Glättungskonstante, die bei der Berechnung des geglätteten Durchschnitts für das allgemeine Niveau oder die Größe des Umsatzes verwendet wird. Gültige Werte für Alpha-Bereich von 0 bis 1. b Die Glättungskonstante, die bei der Berechnung des geglätteten Durchschnitts für die Trendkomponente der Prognose verwendet wird. Gültige Werte für Beta-Bereich von 0 bis 1. Ob ein saisonaler Index auf die Prognose a und b angewendet wird, sind unabhängig voneinander. Sie müssen nicht zu 1.0 hinzufügen. Mindestens erforderliche Verkaufsgeschichte: zwei Jahre plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung (PBF) erforderlich sind. Methode 12 verwendet zwei exponentielle Glättungsgleichungen und einen einfachen Durchschnitt, um einen geglätteten Durchschnitt, einen geglätteten Trend und einen einfachen durchschnittlichen saisonalen Faktor zu berechnen. A.14.1 Prognoseberechnung A) Ein exponentiell geglätteter Durchschnitt MAD (122.81 - 114 133.14 - 119 135.33 - 137) 3 8.2 A.15 Auswertung der Prognosen Sie können Prognosemethoden auswählen, um bis zu zwölf Prognosen für jedes Produkt zu generieren. Jede Prognosemethode wird wahrscheinlich eine etwas andere Projektion schaffen. Wenn Tausende von Produkten prognostiziert werden, ist es unpraktisch, eine subjektive Entscheidung zu treffen, welche der Prognosen in Ihren Plänen für jedes der Produkte verwendet werden soll. Das System wertet automatisch die Leistung für jede der von Ihnen ausgewählten Prognosemethoden aus und für jede der prognostizierten Produkte. Sie können zwischen zwei Leistungskriterien, Mean Absolute Deviation (MAD) und Prozent der Genauigkeit (POA) wählen. MAD ist ein Maß für Prognosefehler. POA ist ein Maß für die Prognose-Bias. Beide dieser Leistungsbewertungsverfahren erfordern tatsächliche Verkaufsgeschichte Daten für einen Benutzer bestimmten Zeitraum. Diese Periode der jüngsten Geschichte wird als Halteperiode oder Perioden am besten fit (PBF) bezeichnet. Um die Leistung einer Prognosemethode zu messen, verwenden Sie die Prognoseformeln, um eine Prognose für die historische Holdout-Periode zu simulieren. Es werden in der Regel Unterschiede zwischen den tatsächlichen Verkaufsdaten und der simulierten Prognose für den Haltezeitraum bestehen. Wenn mehrere Prognosemethoden ausgewählt werden, tritt dieser Vorgang für jede Methode auf. Mehrere Prognosen werden für den Haltezeitraum berechnet und verglichen mit der bekannten Verkaufsgeschichte für denselben Zeitraum. Die Vorhersagemethode, die die beste Übereinstimmung (beste Passform) zwischen der Prognose und dem tatsächlichen Verkauf während des Haltezeitraums herstellt, wird für die Verwendung in Ihren Plänen empfohlen. Diese Empfehlung ist für jedes Produkt spezifisch und kann von einer Prognoseerzeugung zur nächsten wechseln. A.16 Mittlere Absolute Abweichung (MAD) MAD ist der Mittelwert (oder Durchschnitt) der Absolutwerte (oder Größe) der Abweichungen (oder Fehler) zwischen Ist - und Prognosedaten. MAD ist ein Maß für die durchschnittliche Größe der zu erwartenden Fehler, bei einer Prognosemethode und Datenhistorie. Da bei der Berechnung absolute Werte verwendet werden, werden bei positiven Fehlern keine negativen Fehler ausgelöst. Beim Vergleich mehrerer Prognosemethoden hat sich derjenige mit dem kleinsten MAD als zuverlässig für dieses Produkt für diesen Holdout-Zeitraum erwiesen. Wenn die Prognose unvoreingenommen ist und Fehler normal verteilt sind, gibt es eine einfache mathematische Beziehung zwischen MAD und zwei anderen gemeinsamen Maßnahmen der Verteilung, Standardabweichung und Mean Squared Error: A.16.1 Prozent der Genauigkeit (POA) Prozent der Genauigkeit (POA) ist Ein Maß für die Prognose-Bias. Wenn die Prognosen konsequent zu hoch sind, sammeln sich Vorräte und Inventurkosten. Wenn die Prognosen konsequent zwei niedrig sind, werden die Vorräte verbraucht und der Kundendienst sinkt. Eine Prognose, die 10 Einheiten zu niedrig ist, dann 8 Einheiten zu hoch, dann 2 Einheiten zu hoch, wäre eine unvoreingenommene Prognose. Der positive Fehler von 10 wird durch Negativfehler von 8 und 2 abgebrochen. Fehler Tatsächlich - Prognose Wenn ein Produkt im Inventar gespeichert werden kann und wenn die Prognose unvoreingenommen ist, kann eine kleine Menge an Sicherheitsbestand verwendet werden, um die Fehler zu puffern. In dieser Situation ist es nicht so wichtig, Prognosefehler zu beseitigen, da es darum geht, unvoreingenommene Prognosen zu erzeugen. Doch in der Dienstleistungsbranche wäre die obige Situation als drei Fehler zu betrachten. Der Dienst würde in der ersten Periode unterbesetzt sein, dann überbesetzt für die nächsten zwei Perioden. In den Diensten ist die Größenordnung der Prognosefehler in der Regel wichtiger als die Vorhersage. Die Summation über die Holdout-Periode ermöglicht positive Fehler, um negative Fehler zu annullieren. Wenn die Summe der tatsächlichen Verkäufe die Summe der Prognoseverkäufe übersteigt, ist das Verhältnis größer als 100. Natürlich ist es unmöglich, mehr als 100 genau zu sein. Wenn eine Prognose unvoreingenommen ist, wird das POA-Verhältnis 100 sein. Daher ist es wünschenswerter, 95 genau zu sein, als 110 genau zu sein. Die POA-Kriterien wählen die Prognosemethode, die ein POA-Verhältnis hat, das am nächsten zu 100 liegt. Scripting auf dieser Seite verbessert die Inhaltsnavigation, ändert aber den Inhalt nicht in irgendeiner Weise.3 Verständnis von Prognoseebenen und - methoden Sie können sowohl Detail - (Einzelposten-) Prognosen generieren Und Zusammenfassung (Produktlinie) Prognosen, die Produktnachfragemuster widerspiegeln. Das System analysiert die bisherigen Verkäufe, um die Prognosen mit 12 Prognosemethoden zu berechnen. Die Prognosen beinhalten Detailinformationen auf der Positionsebene und übergeordnete Informationen über eine Zweigniederlassung oder das Unternehmen als Ganzes. 3.1 Prognoseleistungsbewertungskriterien Abhängig von der Auswahl der Verarbeitungsoptionen und von Trends und Mustern in den Verkaufsdaten sind einige Prognosemethoden besser als andere für einen gegebenen historischen Datensatz. Eine für ein Produkt geeignete Vorhersagemethode ist möglicherweise nicht für ein anderes Produkt geeignet. Sie könnten feststellen, dass eine Prognosemethode, die auf einer Stufe eines Produktlebenszyklus gute Ergebnisse liefert, während des gesamten Lebenszyklus angemessen bleibt. Sie können zwischen zwei Methoden wählen, um die aktuelle Leistung der Prognosemethoden zu bewerten: Prozent der Genauigkeit (POA). Mittlere absolute Abweichung (MAD). Beide dieser Bewertungsbewertungsmethoden erfordern historische Verkaufsdaten für einen Zeitraum, den Sie angeben. Dieser Zeitraum wird als Haltezeit oder Periode der besten Passung bezeichnet. The data in this period is used as the basis for recommending which forecasting method to use in making the next forecast projection. This recommendation is specific to each product and can change from one forecast generation to the next. 3.1.1 Best Fit The system recommends the best fit forecast by applying the selected forecasting methods to past sales order history and comparing the forecast simulation to the actual history. When you generate a best fit forecast, the system compares actual sales order histories to forecasts for a specific time period and computes how accurately each different forecasting method predicted sales. Then the system recommends the most accurate forecast as the best fit. This graphic illustrates best fit forecasts: Figure 3-1 Best fit forecast The system uses this sequence of steps to determine the best fit: Use each specified method to simulate a forecast for the holdout period. Compare actual sales to the simulated forecasts for the holdout period. Calculate the POA or the MAD to determine which forecasting method most closely matches the past actual sales. The system uses either POA or MAD, based on the processing options that you select. Recommend a best fit forecast by the POA that is closest to 100 percent (over or under) or the MAD that is closest to zero. 3.2 Forecasting Methods JD Edwards EnterpriseOne Forecast Management uses 12 methods for quantitative forecasting and indicates which method provides the best fit for the forecasting situation. This section discusses: Method 1: Percent Over Last Year. Method 2: Calculated Percent Over Last Year. Method 3: Last Year to This Year. Method 4: Moving Average. Method 5: Linear Approximation. Method 6: Least Squares Regression. Method 7: Second Degree Approximation. Method 8: Flexible Method. Method 9: Weighted Moving Average. Method 10: Linear Smoothing. Method 11: Exponential Smoothing. Method 12: Exponential Smoothing with Trend and Seasonality. Specify the method that you want to use in the processing options for the Forecast Generation program (R34650). Most of these methods provide limited control. For example, the weight placed on recent historical data or the date range of historical data that is used in the calculations can be specified by you. The examples in the guide indicate the calculation procedure for each of the available forecasting methods, given an identical set of historical data. The method examples in the guide use part or all of these data sets, which is historical data from the past two years. The forecast projection goes into next year. This sales history data is stable with small seasonal increases in July and December. This pattern is characteristic of a mature product that might be approaching obsolescence. 3.2.1 Method 1: Percent Over Last Year This method uses the Percent Over Last Year formula to multiply each forecast period by the specified percentage increase or decrease. To forecast demand, this method requires the number of periods for the best fit plus one year of sales history. This method is useful to forecast demand for seasonal items with growth or decline. 3.2.1.1 Example: Method 1: Percent Over Last Year The Percent Over Last Year formula multiplies sales data from the previous year by a factor you specify and then projects that result over the next year. This method might be useful in budgeting to simulate the affect of a specified growth rate or when sales history has a significant seasonal component. Forecast specifications: Multiplication factor. For example, specify 110 in the processing option to increase the previous years sales history data by 10 percent. Required sales history: One year for calculating the forecast, plus the number of time periods that are required for evaluating the forecast performance (periods of best fit) that you specify. This table is history used in the forecast calculation: February forecast equals 117 times 1.1 128.7 rounded to 129. March forecast equals 115 times 1.1 126.5 rounded to 127. 3.2.2 Method 2: Calculated Percent Over Last Year This method uses the Calculated Percent Over Last Year formula to compare the past sales of specified periods to sales from the same periods of the previous year. The system determines a percentage increase or decrease, and then multiplies each period by the percentage to determine the forecast. To forecast demand, this method requires the number of periods of sales order history plus one year of sales history. This method is useful to forecast short term demand for seasonal items with growth or decline. 3.2.2.1 Example: Method 2: Calculated Percent Over Last Year The Calculated Percent Over Last Year formula multiplies sales data from the previous year by a factor that is calculated by the system, and then it projects that result for the next year. This method might be useful in projecting the affect of extending the recent growth rate for a product into the next year while preserving a seasonal pattern that is present in sales history. Forecast specifications: Range of sales history to use in calculating the rate of growth. For example, specify n equals 4 in the processing option to compare sales history for the most recent four periods to those same four periods of the previous year. Use the calculated ratio to make the projection for the next year. Required sales history: One year for calculating the forecast plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation, given n 4: February forecast equals 117 times 0.9766 114.26 rounded to 114. March forecast equals 115 times 0.9766 112.31 rounded to 112. 3.2.3 Method 3: Last Year to This Year This method uses last years sales for the next years forecast. To forecast demand, this method requires the number of periods best fit plus one year of sales order history. This method is useful to forecast demand for mature products with level demand or seasonal demand without a trend. 3.2.3.1 Example: Method 3: Last Year to This Year The Last Year to This Year formula copies sales data from the previous year to the next year. This method might be useful in budgeting to simulate sales at the present level. The product is mature and has no trend over the long run, but a significant seasonal demand pattern might exist. Forecast specifications: None. Required sales history: One year for calculating the forecast plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: January forecast equals January of last year with a forecast value of 128. February forecast equals February of last year with a forecast value of 117. March forecast equals March of last year with a forecast value of 115. 3.2.4 Method 4: Moving Average This method uses the Moving Average formula to average the specified number of periods to project the next period. You should recalculate it often (monthly, or at least quarterly) to reflect changing demand level. To forecast demand, this method requires the number of periods best fit plus the number of periods of sales order history. This method is useful to forecast demand for mature products without a trend. 3.2.4.1 Example: Method 4: Moving Average Moving Average (MA) is a popular method for averaging the results of recent sales history to determine a projection for the short term. The MA forecast method lags behind trends. Forecast bias and systematic errors occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products than for products that are in the growth or obsolescence stages of the life cycle. Forecast specifications: n equals the number of periods of sales history to use in the forecast calculation. For example, specify n 4 in the processing option to use the most recent four periods as the basis for the projection into the next time period. A large value for n (such as 12) requires more sales history. It results in a stable forecast, but is slow to recognize shifts in the level of sales. Conversely, a small value for n (such as 3) is quicker to respond to shifts in the level of sales, but the forecast might fluctuate so widely that production cannot respond to the variations. Required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: February forecast equals (114 119 137 125) 4 123.75 rounded to 124. March forecast equals (119 137 125 124) 4 126.25 rounded to 126. 3.2.5 Method 5: Linear Approximation This method uses the Linear Approximation formula to compute a trend from the number of periods of sales order history and to project this trend to the forecast. You should recalculate the trend monthly to detect changes in trends. This method requires the number of periods of best fit plus the number of specified periods of sales order history. This method is useful to forecast demand for new products, or products with consistent positive or negative trends that are not due to seasonal fluctuations. 3.2.5.1 Example: Method 5: Linear Approximation Linear Approximation calculates a trend that is based upon two sales history data points. Those two points define a straight trend line that is projected into the future. Use this method with caution because long range forecasts are leveraged by small changes in just two data points. Forecast specifications: n equals the data point in sales history that is compared to the most recent data point to identify a trend. For example, specify n 4 to use the difference between December (most recent data) and August (four periods before December) as the basis for calculating the trend. Minimum required sales history: n plus 1 plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: January forecast December of past year 1 (Trend) which equals 137 (1 times 2) 139. February forecast December of past year 1 (Trend) which equals 137 (2 times 2) 141. March forecast December of past year 1 (Trend) which equals 137 (3 times 2) 143. 3.2.6 Method 6: Least Squares Regression The Least Squares Regression (LSR) method derives an equation describing a straight line relationship between the historical sales data and the passage of time. LSR fits a line to the selected range of data so that the sum of the squares of the differences between the actual sales data points and the regression line are minimized. The forecast is a projection of this straight line into the future. This method requires sales data history for the period that is represented by the number of periods best fit plus the specified number of historical data periods. The minimum requirement is two historical data points. This method is useful to forecast demand when a linear trend is in the data. 3.2.6.1 Example: Method 6: Least Squares Regression Linear Regression, or Least Squares Regression (LSR), is the most popular method for identifying a linear trend in historical sales data. The method calculates the values for a and b to be used in the formula: This equation describes a straight line, where Y represents sales and X represents time. Linear regression is slow to recognize turning points and step function shifts in demand. Linear regression fits a straight line to the data, even when the data is seasonal or better described by a curve. When sales history data follows a curve or has a strong seasonal pattern, forecast bias and systematic errors occur. Forecast specifications: n equals the periods of sales history that will be used in calculating the values for a and b. For example, specify n 4 to use the history from September through December as the basis for the calculations. When data is available, a larger n (such as n 24) would ordinarily be used. LSR defines a line for as few as two data points. For this example, a small value for n (n 4) was chosen to reduce the manual calculations that are required to verify the results. Minimum required sales history: n periods plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: March forecast equals 119.5 (7 times 2.3) 135.6 rounded to 136. 3.2.7 Method 7: Second Degree Approximation To project the forecast, this method uses the Second Degree Approximation formula to plot a curve that is based on the number of periods of sales history. This method requires the number of periods best fit plus the number of periods of sales order history times three. This method is not useful to forecast demand for a long-term period. 3.2.7.1 Example: Method 7: Second Degree Approximation Linear Regression determines values for a and b in the forecast formula Y a b X with the objective of fitting a straight line to the sales history data. Second Degree Approximation is similar, but this method determines values for a, b, and c in the this forecast formula: Y a b X c X 2 The objective of this method is to fit a curve to the sales history data. This method is useful when a product is in the transition between life cycle stages. For example, when a new product moves from introduction to growth stages, the sales trend might accelerate. Because of the second order term, the forecast can quickly approach infinity or drop to zero (depending on whether coefficient c is positive or negative). This method is useful only in the short term. Forecast specifications: the formula find a, b, and c to fit a curve to exactly three points. You specify n, the number of time periods of data to accumulate into each of the three points. In this example, n 3. Actual sales data for April through June is combined into the first point, Q1. July through September are added together to create Q2, and October through December sum to Q3. The curve is fitted to the three values Q1, Q2, and Q3. Required sales history: 3 times n periods for calculating the forecast plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: Q0 (Jan) (Feb) (Mar) Q1 (Apr) (May) (Jun) which equals 125 122 137 384 Q2 (Jul) (Aug) (Sep) which equals 140 129 131 400 Q3 (Oct) (Nov) (Dec) which equals 114 119 137 370 The next step involves calculating the three coefficients a, b, and c to be used in the forecasting formula Y a b X c X 2 . Q1, Q2, and Q3 are presented on the graphic, where time is plotted on the horizontal axis. Q1 represents total historical sales for April, May, and June and is plotted at X 1 Q2 corresponds to July through September Q3 corresponds to October through December and Q4 represents January through March. This graphic illustrates the plotting of Q1, Q2, Q3, and Q4 for second degree approximation: Figure 3-2 Plotting Q1, Q2, Q3, and Q4 for second degree approximation Three equations describe the three points on the graph: (1) Q1 a bX cX 2 where X 1(Q1 a b c) (2) Q2 a bX cX 2 where X 2(Q2 a 2b 4c) (3) Q3 a bX cX 2 where X 3(Q3 a 3b 9c) Solve the three equations simultaneously to find b, a, and c: Subtract equation 1 (1) from equation 2 (2) and solve for b: (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Substitute this equation for b into equation (3): (3) Q3 a 3(Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3(Q2 ndash Q1) Finally, substitute these equations for a and b into equation (1): (1)Q3 ndash 3(Q2 ndash Q1) (Q2 ndash Q1) ndash 3c c Q1 c (Q3 ndash Q2) (Q1 ndash Q2) 2 The Second Degree Approximation method calculates a, b, and c as follows: a Q3 ndash 3(Q2 ndash Q1) 370 ndash 3(400 ndash 384) 370 ndash 3(16) 322 b (Q2 ndash Q1) ndash3c (400 ndash 384) ndash (3 times ndash23) 16 69 85 c (Q3 ndash Q2) (Q1 ndash Q2) 2 (370 ndash 400) (384 ndash 400) 2 ndash23 This is a calculation of second degree approximation forecast: Y a bX cX 2 322 85X (ndash23) (X 2 ) When X 4, Q4 322 340 ndash 368 294. The forecast equals 294 3 98 per period. When X 5, Q5 322 425 ndash 575 172. The forecast equals 172 3 58.33 rounded to 57 per period. When X 6, Q6 322 510 ndash 828 4. The forecast equals 4 3 1.33 rounded to 1 per period. This is the forecast for next year, Last Year to This Year: 3.2.8 Method 8: Flexible Method This method enables you to select the best fit number of periods of sales order history that starts n months before the forecast start date, and to apply a percentage increase or decrease multiplication factor with which to modify the forecast. This method is similar to Method 1, Percent Over Last Year, except that you can specify the number of periods that you use as the base. Depending on what you select as n, this method requires periods best fit plus the number of periods of sales data that is indicated. This method is useful to forecast demand for a planned trend. 3.2.8.1 Example: Method 8: Flexible Method The Flexible Method (Percent Over n Months Prior) is similar to Method 1, Percent Over Last Year. Both methods multiply sales data from a previous time period by a factor specified by you, and then project that result into the future. In the Percent Over Last Year method, the projection is based on data from the same time period in the previous year. You can also use the Flexible Method to specify a time period, other than the same period in the last year, to use as the basis for the calculations. Multiplication factor. For example, specify 110 in the processing option to increase previous sales history data by 10 percent. Base period. For example, n 4 causes the first forecast to be based on sales data in September of last year. Minimum required sales history: the number of periods back to the base period plus the number of time periods that is required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.9 Method 9: Weighted Moving Average The Weighted Moving Average formula is similar to Method 4, Moving Average formula, because it averages the previous months sales history to project the next months sales history. However, with this formula you can assign weights for each of the prior periods. This method requires the number of weighted periods selected plus the number of periods best fit data. Similar to Moving Average, this method lags behind demand trends, so this method is not recommended for products with strong trends or seasonality. This method is useful to forecast demand for mature products with demand that is relatively level. 3.2.9.1 Example: Method 9: Weighted Moving Average The Weighted Moving Average (WMA) method is similar to Method 4, Moving Average (MA). However, you can assign unequal weights to the historical data when using WMA. The method calculates a weighted average of recent sales history to arrive at a projection for the short term. More recent data is usually assigned a greater weight than older data, so WMA is more responsive to shifts in the level of sales. However, forecast bias and systematic errors occur when the product sales history exhibits strong trends or seasonal patterns. This method works better for short range forecasts of mature products than for products in the growth or obsolescence stages of the life cycle. The number of periods of sales history (n) to use in the forecast calculation. For example, specify n 4 in the processing option to use the most recent four periods as the basis for the projection into the next time period. A large value for n (such as 12) requires more sales history. Such a value results in a stable forecast, but it is slow to recognize shifts in the level of sales. Conversely, a small value for n (such as 3) responds more quickly to shifts in the level of sales, but the forecast might fluctuate so widely that production cannot respond to the variations. The total number of periods for the processing option rdquo14 - periods to includerdquo should not exceed 12 months. The weight that is assigned to each of the historical data periods. The assigned weights must total 1.00. For example, when n 4, assign weights of 0.50, 0.25, 0.15, and 0.10 with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: January forecast equals (131 times 0.10) (114 times 0.15) (119 times 0.25) (137 times 0.50) (0.10 0.15 0.25 0.50) 128.45 rounded to 128. February forecast equals (114 times 0.10) (119 times 0.15) (137 times 0.25) (128 times 0.50) 1 127.5 rounded to 128. March forecast equals (119 times 0.10) (137 times 0.15) (128 times 0.25) (128 times 0.50) 1 128.45 rounded to 128. 3.2.10 Method 10: Linear Smoothing This method calculates a weighted average of past sales data. In the calculation, this method uses the number of periods of sales order history (from 1 to 12) that is indicated in the processing option. The system uses a mathematical progression to weigh data in the range from the first (least weight) to the final (most weight). Then the system projects this information to each period in the forecast. This method requires the months best fit plus the sales order history for the number of periods that are specified in the processing option. 3.2.10.1 Example: Method 10: Linear Smoothing This method is similar to Method 9, WMA. However, instead of arbitrarily assigning weights to the historical data, a formula is used to assign weights that decline linearly and sum to 1.00. The method then calculates a weighted average of recent sales history to arrive at a projection for the short term. Like all linear moving average forecasting techniques, forecast bias and systematic errors occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products than for products in the growth or obsolescence stages of the life cycle. n equals the number of periods of sales history to use in the forecast calculation. For example, specify n equals 4 in the processing option to use the most recent four periods as the basis for the projection into the next time period. The system automatically assigns the weights to the historical data that decline linearly and sum to 1.00. For example, when n equals 4, the system assigns weights of 0.4, 0.3, 0.2, and 0.1, with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.11 Method 11: Exponential Smoothing This method calculates a smoothed average, which becomes an estimate representing the general level of sales over the selected historical data periods. This method requires sales data history for the time period that is represented by the number of periods best fit plus the number of historical data periods that are specified. The minimum requirement is two historical data periods. This method is useful to forecast demand when no linear trend is in the data. 3.2.11.1 Example: Method 11: Exponential Smoothing This method is similar to Method 10, Linear Smoothing. In Linear Smoothing, the system assigns weights that decline linearly to the historical data. In Exponential Smoothing, the system assigns weights that exponentially decay. The equation for Exponential Smoothing forecasting is: Forecast alpha (Previous Actual Sales) (1 ndashalpha) (Previous Forecast) The forecast is a weighted average of the actual sales from the previous period and the forecast from the previous period. Alpha is the weight that is applied to the actual sales for the previous period. (1 ndash alpha) is the weight that is applied to the forecast for the previous period. Values for alpha range from 0 to 1 and usually fall between 0.1 and 0.4. The sum of the weights is 1.00 (alpha (1 ndash alpha) 1). You should assign a value for the smoothing constant, alpha. If you do not assign a value for the smoothing constant, the system calculates an assumed value that is based on the number of periods of sales history that is specified in the processing option. alpha equals the smoothing constant that is used to calculate the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. n equals the range of sales history data to include in the calculations. Generally, one year of sales history data is sufficient to estimate the general level of sales. For this example, a small value for n (n 4) was chosen to reduce the manual calculations that are required to verify the results. Exponential Smoothing can generate a forecast that is based on as little as one historical data point. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.12 Method 12: Exponential Smoothing with Trend and Seasonality This method calculates a trend, a seasonal index, and an exponentially smoothed average from the sales order history. The system then applies a projection of the trend to the forecast and adjusts for the seasonal index. This method requires the number of periods best fit plus two years of sales data, and is useful for items that have both trend and seasonality in the forecast. You can enter the alpha and beta factor, or have the system calculate them. Alpha and beta factors are the smoothing constant that the system uses to calculate the smoothed average for the general level or magnitude of sales (alpha) and the trend component of the forecast (beta). 3.2.12.1 Example: Method 12: Exponential Smoothing with Trend and Seasonality This method is similar to Method 11, Exponential Smoothing, in that a smoothed average is calculated. However, Method 12 also includes a term in the forecasting equation to calculate a smoothed trend. The forecast is composed of a smoothed average that is adjusted for a linear trend. When specified in the processing option, the forecast is also adjusted for seasonality. Alpha equals the smoothing constant that is used in calculating the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. Beta equals the smoothing constant that is used in calculating the smoothed average for the trend component of the forecast. Values for beta range from 0 to 1. Whether a seasonal index is applied to the forecast. Alpha and beta are independent of one another. They do not have to sum to 1.0. Minimum required sales history: One year plus the number of time periods that are required to evaluate the forecast performance (periods of best fit). When two or more years of historical data is available, the system uses two years of data in the calculations. Method 12 uses two Exponential Smoothing equations and one simple average to calculate a smoothed average, a smoothed trend, and a simple average seasonal index. An exponentially smoothed average: An exponentially smoothed trend: A simple average seasonal index: Figure 3-3 Simple Average Seasonal Index The forecast is then calculated by using the results of the three equations: L is the length of seasonality (L equals 12 months or 52 weeks). t is the current time period. m is the number of time periods into the future of the forecast. S is the multiplicative seasonal adjustment factor that is indexed to the appropriate time period. This table lists history used in the forecast calculation: This section provides an overview of Forecast Evaluations and discusses: You can select forecasting methods to generate as many as 12 forecasts for each product. Each forecasting method might create a slightly different projection. When thousands of products are forecast, a subjective decision is impractical regarding which forecast to use in the plans for each product. The system automatically evaluates performance for each forecasting method that you select and for each product that you forecast. You can select between two performance criteria: MAD and POA. MAD is a measure of forecast error. POA is a measure of forecast bias. Both of these performance evaluation techniques require actual sales history data for a period specified by you. The period of recent history used for evaluation is called a holdout period or period of best fit. To measure the performance of a forecasting method, the system: Uses the forecast formulas to simulate a forecast for the historical holdout period. Makes a comparison between the actual sales data and the simulated forecast for the holdout period. When you select multiple forecast methods, this same process occurs for each method. Multiple forecasts are calculated for the holdout period and compared to the known sales history for that same period. The forecasting method that produces the best match (best fit) between the forecast and the actual sales during the holdout period is recommended for use in the plans. This recommendation is specific to each product and might change each time that you generate a forecast. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD is the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, a simple mathematical relationship exists between MAD and two other common measures of distribution, which are standard deviation and Mean Squared Error. For example: MAD (Sigma (Actual) ndash (Forecast)) n Standard Deviation, (sigma) cong 1.25 MAD Mean Squared Error cong ndashsigma2 This example indicates the calculation of MAD for two of the forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.1.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: Mean Absolute Deviation equals (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way.
No comments:
Post a Comment